I have stumbled upon a slight issue in solving one of the Paper 4's, could someone please explain how to go about solving this ? 
part (d) & (e) of question 5, on the attached sheet.
Ok here goes the (d) part.
Let midpoint of the chord be G,perpendicular from centre bisects the chord AC. 
Now AG = 1.8 m 
Now two right angled triangles AOF and AGE are similar, therefore their corresponding sides will be proportional
OA/AG= AF/GE
2/1.8=5/GE
GE=(5*1.8)/2 = 4.5 m
CHeck the attached image.
e) Consider the triangle OGC. OG = 
)
 = 0.87
     Let the point where GE intersects the circle be M.
      MG = 2 + 0.87 = 2.87 
      Thus ME = 4.5 - 2.87 = 1.63
       OE =  ME + OM  = 3.63
      OD = 
)
 = 
       Consider the right angled triangle ODE. OE = 3.63, OD = 
)
, thus 


ED = 
)
 = 3.97
FE = ED = 3.97
FD = 8 (app.)
Area of trapezium   = 0.5* (3.6+8)*4.5 = 26.1
Area of whole Shape = 26.1 + Area of the semi-circle ABC. 
Area of semi-circle ABC = 2.913
Thus the area of the whole shape = 29cm^2