IGCSE/GCSE/O & A Level/IB/University Student Forum
Qualification => Subject Doubts => IB => Math => Topic started by: candy on May 21, 2009, 10:06:28 pm
-
Please show all the steps :'(
proving identities!!
sin^2xcos^2x=1/8(1-cos4x)
-
solve the right hand side
-
i dont get the question write in words :S
-
i need help in this q too ...
how do u solve cos22x
-
the q is
sin2x cos2x = 1/8(1- cos 4x)
-
Please show all the steps :'(
proving identities!!
sin^2xcos^2x=1/8(1-cos4x)
sin^2xcos^2x=(1/4)(2 sinxcosx)^2=1/4(sin2x)^2=
Now use cos4x=1-2sin^2(2x) so sin^2(2x)=1/2(1-cos4x)
-
how 2 solve sin^2(2x) ?
-
how 2 solve sin^2(2x) ?
=1/2(1-cos4x))
you substitute this in
-
thx loads astar ;)
-
The above question can also be solved by the following method:
Remember to use the double angle formula for cos 2x
cos 2x = 2 cos² x - 1 cos ²x =½ ( 1 + cos 2x )
cos 2x = 1 - 2 sin²x sin² x =½ ( 1 - cos 2x )
It follows that
cos 4x = cos 2 (2x)= 2 cos ²(2x) - 1 cos² (2x) =½ ( 1 + cos 4x)
cos 4x = cos 2 (2x) = 1 - 2 sin² (2x) sin² (2x) =½ ( 1 - cos 4x )
sin² x cos² x
=½ ( 1 - cos 2x) * ½ ( 1 + cos 2x) From : (A-B)(A+B)=A² - B²
=¼ ( 1 – cos² 2x)
=¼ { 1 - ½ ( 1+ cos 2(2x) ) }
=¼( 1 - ½ - ½ cos 4x )
=¼( ½ - ½ cos 4x)
=(¼) (½ )( 1 - cos 4x)
=1/8 ( 1 - cos 4x )
-
thanxxx a ton louis and astar 8) 8) 8)