The above question can also be solved by the following method:
Remember to use the double angle formula for cos 2x
cos 2x = 2 cos² x - 1 cos ²x =½ ( 1 + cos 2x )
cos 2x = 1 - 2 sin²x sin² x =½ ( 1 - cos 2x )
It follows that
cos 4x = cos 2 (2x)= 2 cos ²(2x) - 1 cos² (2x) =½ ( 1 + cos 4x)
cos 4x = cos 2 (2x) = 1 - 2 sin² (2x) sin² (2x) =½ ( 1 - cos 4x )
sin² x cos² x
=½ ( 1 - cos 2x) * ½ ( 1 + cos 2x) From : (A-B)(A+B)=A² - B²
=¼ ( 1 – cos² 2x)
=¼ { 1 - ½ ( 1+ cos 2(2x) ) }
=¼( 1 - ½ - ½ cos 4x )
=¼( ½ - ½ cos 4x)
=(¼) (½ )( 1 - cos 4x)
=1/8 ( 1 - cos 4x )