-->
P1 CIE question geometric sequences
Revolution Now!
Welcome,
Guest
. Please
login
or
register
.
Have you missed your
activation email
?
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length.
News:
New servers, hooraaaay! More bandwidth, more power.
-->
Home
Help
Calendar
Login
Register
IGCSE/GCSE/O & A Level/IB/University Student Forum
»
Qualification
»
GCE AS & A2 Level
»
Subject Doubts
»
Math
»
P1 CIE question geometric sequences
« previous
next »
Print
Pages: [
1
]
Go Down
Author
Topic: P1 CIE question geometric sequences (Read 937 times)
tmisterr
SF Citizen
Posts: 186
Reputation: 43273
P1 CIE question geometric sequences
«
on:
February 21, 2010, 01:23:04 pm »
A person wants to borro $100000 to buy a house. He intends to pay back a fixed sum of $C at the end of each year so that after 25 years he has completely paid off the debt. Assuming a steady interest rate of 4% per year expalin why:
100000=C(1/1.04+1/1.04
2
+1/1.04
3
+......1+1.04
25
Calculate the value of C
Logged
astarmathsandphysics
SF Overlord
Posts: 11271
Reputation: 65534
Gender:
Free the exam papers!
Re: P1 CIE question geometric sequences
«
Reply #1 on:
February 21, 2010, 02:27:58 pm »
4 hours
Logged
astarmathsandphysics
SF Overlord
Posts: 11271
Reputation: 65534
Gender:
Free the exam papers!
Re: P1 CIE question geometric sequences
«
Reply #2 on:
February 21, 2010, 05:03:14 pm »
100000=C(1/1.04+1/1.042+1/1.043+......1+1.04^25)
100000=C(a(1-r^n)/1-r))
100000=C(1(1-1/1.04^25)(1-1/1.04)=C*16.62
C=1662000
Logged
tmisterr
SF Citizen
Posts: 186
Reputation: 43273
Re: P1 CIE question geometric sequences
«
Reply #3 on:
February 22, 2010, 02:30:20 pm »
can you start from th beginning, the first part, findng C is not the problem, proving the formular is
Logged
astarmathsandphysics
SF Overlord
Posts: 11271
Reputation: 65534
Gender:
Free the exam papers!
Re: P1 CIE question geometric sequences
«
Reply #4 on:
February 22, 2010, 02:43:16 pm »
Ok. I will do it when Iget home
Logged
astarmathsandphysics
SF Overlord
Posts: 11271
Reputation: 65534
Gender:
Free the exam papers!
Re: P1 CIE question geometric sequences
«
Reply #5 on:
February 23, 2010, 08:46:16 am »
100000=C(1/1.04+1/1.042+1/1.043+......1+1.0425
multiply both sides by 1/1.04
100000/1.04=C(1/1.042+1/1.043+......1+1.0425+1/1.04^26)
subtract the two sequences
100000-100000/1.04=C(1/1.04-1/1.04^26)
C=(100000-100000/1.04)/(1/1.04-1/1.04^26)
Logged
Print
Pages: [
1
]
Go Up
« previous
next »
IGCSE/GCSE/O & A Level/IB/University Student Forum
»
Qualification
»
GCE AS & A2 Level
»
Subject Doubts
»
Math
»
P1 CIE question geometric sequences
\n\t\t\t\t\t\t\t\t\t
<' + '/div>\n\t\t\t\t\t\t\t\t\t
%body%<' + '/textarea>
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t<' + '/div>\n\t\t\t\t\t\t\t\t<' + '/div>', sTemplateSubjectEdit: '
', sTemplateBodyNormal: '%body%', sTemplateSubjectNormal: '
%subject%<' + '/a>', sTemplateTopSubject: 'Topic: %subject% (Read 937 times)', sErrorBorderStyle: '1px solid red' }); aJumpTo[aJumpTo.length] = new JumpTo({ sContainerId: "display_jump_to", sJumpToTemplate: "
Jump to:<" + "/label> %dropdown_list%", iCurBoardId: 146, iCurBoardChildLevel: 2, sCurBoardName: "Math", sBoardChildLevelIndicator: "==", sBoardPrefix: "=> ", sCatSeparator: "-----------------------------", sCatPrefix: "", sGoButtonLabel: "Go" }); aIconLists[aIconLists.length] = new IconList({ sBackReference: "aIconLists[" + aIconLists.length + "]", sIconIdPrefix: "msg_icon_", sScriptUrl: smf_scripturl, bShowModify: true, iBoardId: 146, iTopicId: 6042, sSessionId: "ec69b77d03c11cc483fc0ace16fa505a", sSessionVar: "c3447cfb7", sLabelIconList: "Message Icon", sBoxBackground: "transparent", sBoxBackgroundHover: "#ffffff", iBoxBorderWidthHover: 1, sBoxBorderColorHover: "#adadad" , sContainerBackground: "#ffffff", sContainerBorder: "1px solid #adadad", sItemBorder: "1px solid #ffffff", sItemBorderHover: "1px dotted gray", sItemBackground: "transparent", sItemBackgroundHover: "#e0e0f0" }); } // ]]>--> -->