Well whats so hard bout it??
>> ln(x)+3 ln(y)-ln(2) = ln(x^4)-ln(54)
here follow log rules
eg. ln(a) + ln(b) = ln(ab)
ln(a) - ln(b) = ln(a/b)
3ln(a) = ln(a^3)
>> ln(x) + ln(y^3) - ln(2) = ln(x^4) -ln(54)
ln(x.y^3) - ln(2) = ln(x^4) -ln(54)
just collect all x & y on 1side and whole nos. on other side
i.e,
-ln(2) + ln(54) = ln(x^4) - ln(x.y^3)
ln(54) - ln(2) = ln ([x^4] / [x.y^3])
ln(54/2) = ln(x^3 / y^3)
ln(27) = ln(x/y)^3
try to solve it urself, heres a hint:
ln(a)=ln(2)
a = e^2 ----->anti-log
hope this is helpful