Please explain both parts still didn't get it ...
It's given that the nth term is n(n+1)/k where k comes out to be 2.
so, (n+1)th term will be (n+1)(n+2)/k where k is 2. (v'll add 1 because it's n+1 and not n)
so v'll do this now: 
         (n(n+1))/2 + ((n+1)(n+2))/2
         =(n^2+n+n^2+2n+n+2)/2
         =(2n^2+4n+2)/2
         =(2(n^2+2n+1))/2
         =n^2+2n+1
         So, n^2+2n+1=(n+1)^2
Now v have to find 2 consecutive terms with sum of 3481.
v got frm d above ans that the sum of two consecutive nos. is (n+1)^2
now v'll use that and make it equal to 3481 as given below
             (n+1)^2=3481
             n^2+2n+1=3481
             n^2+2n-3480=0
             n=(-2+-underroot(2^2-4*1*-3480))/2
             n=(-2+-underroot(13924))/2
             n=(-2+-118)/2
             So, n=58, -60
             n=58 (It can't be negative)
             Two terms will be n, (n+1)
             =58, 59
             (58(58+1))/2=1711
             (59(59+1))/2=1770
             Answer=1711 and 1770
hope u get it now!! 
