-->
Needs help with complex numbers
Revolution Now!
Welcome,
Guest
. Please
login
or
register
.
Have you missed your
activation email
?
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length.
News:
New servers, hooraaaay! More bandwidth, more power.
-->
Home
Help
Calendar
Login
Register
IGCSE/GCSE/O & A Level/IB/University Student Forum
»
Qualification
»
GCE AS & A2 Level
»
Subject Doubts
»
Math
»
Needs help with complex numbers
« previous
next »
Print
Pages: [
1
]
Go Down
Author
Topic: Needs help with complex numbers (Read 1055 times)
Priya
Newbie
Posts: 39
Reputation: 20
Needs help with complex numbers
«
on:
June 18, 2009, 03:46:48 am »
Can you explain how to do the last part...
At the same time, I would be really grateful if you could explain how do do maximum of z, least argument and maximum argument...
Thank you very much for all the help!
«
Last Edit: June 18, 2009, 04:02:22 am by Priya
»
Logged
astarmathsandphysics
SF Overlord
Posts: 11271
Reputation: 65534
Gender:
Free the exam papers!
Re: Needs help with complex numbers
«
Reply #1 on:
June 18, 2009, 08:32:34 am »
Minimum of |z-(i+i)|=d-r where d is the distance of the centre of the circle from the origin and r is the radius=1
d=
so ans
Logged
astarmathsandphysics
SF Overlord
Posts: 11271
Reputation: 65534
Gender:
Free the exam papers!
Re: Needs help with complex numbers
«
Reply #2 on:
June 18, 2009, 08:46:26 am »
Maximum value of z=greatest distance from origin. There is usually some trickery involved. In this case it is distance of centre of circle from origin +radius of circle.
Greatest argument is biggest angle that the locus makes with the x axis when you go anticlockwise from the positive x axis. In this case the maximum argument is pi/2 and the minimum argument is 0
Logged
Print
Pages: [
1
]
Go Up
« previous
next »
IGCSE/GCSE/O & A Level/IB/University Student Forum
»
Qualification
»
GCE AS & A2 Level
»
Subject Doubts
»
Math
»
Needs help with complex numbers
\n\t\t\t\t\t\t\t\t\t
<' + '/div>\n\t\t\t\t\t\t\t\t\t
%body%<' + '/textarea>
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t<' + '/div>\n\t\t\t\t\t\t\t\t<' + '/div>', sTemplateSubjectEdit: '
', sTemplateBodyNormal: '%body%', sTemplateSubjectNormal: '
%subject%<' + '/a>', sTemplateTopSubject: 'Topic: %subject% (Read 1055 times)', sErrorBorderStyle: '1px solid red' }); aJumpTo[aJumpTo.length] = new JumpTo({ sContainerId: "display_jump_to", sJumpToTemplate: "
Jump to:<" + "/label> %dropdown_list%", iCurBoardId: 146, iCurBoardChildLevel: 2, sCurBoardName: "Math", sBoardChildLevelIndicator: "==", sBoardPrefix: "=> ", sCatSeparator: "-----------------------------", sCatPrefix: "", sGoButtonLabel: "Go" }); aIconLists[aIconLists.length] = new IconList({ sBackReference: "aIconLists[" + aIconLists.length + "]", sIconIdPrefix: "msg_icon_", sScriptUrl: smf_scripturl, bShowModify: true, iBoardId: 146, iTopicId: 2991, sSessionId: "20380d85f2053b6523c382416c03d671", sSessionVar: "c7c2c2e2f", sLabelIconList: "Message Icon", sBoxBackground: "transparent", sBoxBackgroundHover: "#ffffff", iBoxBorderWidthHover: 1, sBoxBorderColorHover: "#adadad" , sContainerBackground: "#ffffff", sContainerBorder: "1px solid #adadad", sItemBorder: "1px solid #ffffff", sItemBorderHover: "1px dotted gray", sItemBackground: "transparent", sItemBackgroundHover: "#e0e0f0" }); } // ]]>--> -->