Author Topic: TRansformations  (Read 6392 times)

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #30 on: May 17, 2009, 03:38:32 pm »
hmmmm nvr tried dat...is it posible 2 giv an eg?
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline junky demon

  • Newbie
  • *
  • Posts: 41
  • Reputation: 3
  • I wish to see this in real-aurora borealis
Re: TRansformations
« Reply #31 on: May 17, 2009, 03:59:11 pm »
P    Q           *         (-3    1    -3)               =   (-3   1  -3)
R     S                      (2    1     -1)                    (-5  0  -2)


so wen u multiply it u gt...-3p + 2q  p+q  -3p-q
                                    -3r+2s    r+s    -3r-s

nw juzz take for eg...-3p+2q=(-3)(here im takin the number from the transformed matrix to equal it..hope ur understandin cuz i suk at explainn..)
and take the other equation p+q=1
nw solve the two as simultaneuos equations..(hope u no hwda do dat!:P juz kiddin..)
so yu gt the two values and den do the sme for the variables 'r' and 's'...there yu go:D
JD'

Offline Ghost Of Highbury

  • O_o_O lala!
  • SF Farseer
  • *******
  • Posts: 4096
  • Reputation: 41428
  • Gender: Male
  • Namaskaram!
Re: TRansformations
« Reply #32 on: May 17, 2009, 04:00:25 pm »
nice method..
thank u
+rep for u :)
divine intervention!

Offline junky demon

  • Newbie
  • *
  • Posts: 41
  • Reputation: 3
  • I wish to see this in real-aurora borealis
Re: TRansformations
« Reply #33 on: May 17, 2009, 04:03:18 pm »
my pleasure.. ;D
all the best to all yu guys out there..hopin a*s for all.. ;)
JD'

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #34 on: May 17, 2009, 06:11:54 pm »
P    Q           *         (-3    1    -3)               =   (-3   1  -3)
R     S                      (2    1     -1)                    (-5  0  -2)


so wen u multiply it u gt...-3p + 2q  p+q  -3p-q
                                    -3r+2s    r+s    -3r-s

nw juzz take for eg...-3p+2q=(-3)(here im takin the number from the transformed matrix to equal it..hope ur understandin cuz i suk at explainn..)
and take the other equation p+q=1
nw solve the two as simultaneuos equations..(hope u no hwda do dat!:P juz kiddin..)
so yu gt the two values and den do the sme for the variables 'r' and 's'...there yu go:D

lol thnkz... our teacher taut us this but nvr used it, hmmm i guess it wud b helpful. thnkz newayz cuz i just understud it b8r n actualy ur a pretty gud explainer lol, not u but i suck @ xplaining LOL :D n yes hopefully v all wud get A*s 4 sure!!!!! Best of luck evry1!!! ;D
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline junky demon

  • Newbie
  • *
  • Posts: 41
  • Reputation: 3
  • I wish to see this in real-aurora borealis
Re: TRansformations
« Reply #35 on: May 17, 2009, 06:30:12 pm »
yeah..n e tym.. 8)
JD'

Offline sweetsh

  • Retired Adminstrator
  • SF V.I.P
  • ********
  • Posts: 7049
  • Reputation: 65535
  • Gender: Female
  • *Freedom
Re: TRansformations
« Reply #36 on: May 17, 2009, 07:24:08 pm »
hey thanks a lot shan....

@priceless and reishamix

i wud like to learn the base vectors method ..plzz.

it wud very kind of u to teach me..
thank you

Lol ya sure np. umm ok here v go.

Reflection:

1. reflection in ml y=x it's (0 1)
                                   (1 0)

2. refelction in ml y=-x itz (0 -1)
                                    (-1 0)

3. refelction in x-axis itz (1 0)
                                 (0 -1)

4. reflection in y-axis itz (-1 0)
                                  (0  1)

Rotation


1. rotation +90 degrees(anticlockwise) around centre(0,0)  itz (0 -1)
                                                                                    (1  0)

2. rotation -90 degrees(clockwise) around centre (0,0)  itz (0  1)
                                                                               (-1 0)

3. rotation 180 degrees around centre (0,0)  itz (-1 0)
                                                                 (0 -1)

Enlargement

1. centre (0,0) wer k=scale factor, itz (k 0)
                                                    (0 k)

Shear

1. x invariant with x-axis wer k=scale factor (1 k)
                                                            (0 1)

2. y invariant with y-axis wer k=scale factor (1 0)
                                                            (k 1)

Stretch

1. x invariant with y-axis wer k=scale factor (1 0)
                                                            (0 k)

2. y invariant with x-axis wer k=scale factor (k 0)
                                                            (0 1)


phew don't LOL i no itz a lot but once u no dem itz rely easy. u can du ur sums very easily den widout doin da point co ordinate thng. once u no wat da transformation is eddie_adi619 u ll no wat da matrix is also. gud luck 2 all 4 ur xams hope v all du well.
Can you please specify which transformations are multiplied and which are added?

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #37 on: May 17, 2009, 07:28:09 pm »
lol sweetsh u dont hv 2 multiply any matrixes or add any. just know wat da transformation is n write down da base vector. dats it. gud luck!!!
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline sweetsh

  • Retired Adminstrator
  • SF V.I.P
  • ********
  • Posts: 7049
  • Reputation: 65535
  • Gender: Female
  • *Freedom
Re: TRansformations
« Reply #38 on: May 17, 2009, 07:33:37 pm »
LOL! I dont like this word at all but i'll use it in this situation.
You didnt inderstand me my friend, sometimes they give you points and then you have to draw them under this transformation, so you have to multiply for example for rotation (0  -1)
                                                                                           (1    0)

zara

  • Guest
Re: TRansformations
« Reply #39 on: May 17, 2009, 07:35:43 pm »
matrix *object=image
v multiply n nt add....

zara

  • Guest
Re: TRansformations
« Reply #40 on: May 17, 2009, 07:37:11 pm »
hope u got wat i meant to explain....

Offline sweetsh

  • Retired Adminstrator
  • SF V.I.P
  • ********
  • Posts: 7049
  • Reputation: 65535
  • Gender: Female
  • *Freedom
Re: TRansformations
« Reply #41 on: May 17, 2009, 07:38:22 pm »
Oh gosh im stupid in this topic! Im an A* in Math but the transformation thing!

Yes I know that zara sweety, but for enlargement you add.

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #42 on: May 17, 2009, 07:39:32 pm »
ok i wudnt use da word if u dont like it but ur ryt i didnt understnd u @ first but now i du. ummm ur asking wen u hv 2 find da new coordinates ryt?..... hmmm i wud hv told u but i dnt use dat method cuz i usually just no wat da transformation is 4rm da base vector given n den use a tracing paper 2 du it as v r allowed 2 use tracing papers itz much more easier n saves tym also. ;)

so i suggest u 2 sk sum1 els cuz if i new i wud hv definitely xplained it 2 u...gud luck neway!!! :)
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #43 on: May 17, 2009, 07:40:05 pm »
so u no wer 2 add n multiply so wats da prob sweetsh? ???
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline sweetsh

  • Retired Adminstrator
  • SF V.I.P
  • ********
  • Posts: 7049
  • Reputation: 65535
  • Gender: Female
  • *Freedom
Re: TRansformations
« Reply #44 on: May 17, 2009, 07:42:29 pm »
I really dont know!
I was confused things are getting better. THANK YOU!