Qualification > Math

IMPORTANTTT

<< < (3/5) > >>

mousa:
Arent those for AUS maths placement test???  ::)

halosh92:
1) if  f(x) = 5x + 1
and g(x) = x^2
then find  g(f(x))=

2) let f(x) = 1/x^2
as x approaches  negative infinity, f(x)
a) approaches 0
b) approaches  negative infinity
c) approaches infinity
d) approaches 1
e) approaches -1

3) given that k>0 solve the exponential equation : e^2t=k   for t
a) (k/2)
b)k^2
c)sqrt k
d) 2k
e) none of these


thxxxxx  ;D

halosh92:

--- Quote from: mousa on August 07, 2010, 08:32:26 am ---Arent those for AUS maths placement test???  ::)

--- End quote ---

yepppp  ;D ;D ;D
u heading there 2 ?

cooldude:

--- Quote from: halosh92 on August 07, 2010, 09:41:22 am ---1) if  f(x) = 5x + 1
and g(x) = x^2
then find  g(f(x))=

2) let f(x) = 1/x^2
as x approaches  negative infinity, f(x)
a) approaches 0
b) approaches  negative infinity
c) approaches infinity
d) approaches 1
e) approaches -1

3) given that k>0 solve the exponential equation : e^2t=k   for t
a) (k/2)
b)k^2
c)sqrt k
d) 2k
e) none of these


thxxxxx  ;D

--- End quote ---

1)gfx=(5x+1)^2
=25x^2+10x+1
2) a)approaches 0
1/(-infinity)^2=0

3) 2t=ln k
t=ln k/2

halosh92:
if sin p = 2/3  and                   pie/2 <= p <= pie                , then tan p is equal to

A) -2/sqrt 5
B)  2 / sqrt 13
c) sqrt 5/2
D)- 1 /sqrt 13
E) 2/sqrt 5

Navigation

[0] Message Index

[#] Next page

[*] Previous page

Go to full version