Qualification > Revison Notes
Trigonometry
nid404:
Ex 5 A
2) a)sec (1/2pi -x)
= 1/ cos (1/2pi -x)
cos(1/2 pi-x)=sin x
so 1/cos(1/2pi-x)=1/sinx = cosec x
f) cosec (pi + x)
=1/sin(pi+x)
sin(pi+x)= -sin x
1/-sin x= -cosec x
3) c) cot 5/6 pi
=1/tan 5/6pi
= 1/-1/
=-
e) cot(-1/3pi)
1/ tan(-1/3 pi)
= 1/-
5) b) cot A= 1/tan A
tan A= sin A/cos A
1/tan A= cos A/sin A
1/tan A= (4/5)/ (3/5)= 4/3
d) cosecB = 1/sin B
sin= / 2
cosecB= 2/ = 2/3
nid404:
Additional formulae
cos(A-B)=cosAcosB+sinAsinB
cos(A+B)=cosAcosB-sinAsinB
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)= sinAcosB-cosAsinB
tan(A+B)=
tan(A-B)=
Ex 5B
2)
a) cos 105o
cos (60+45) = cos60.cos45- sin60.sin45
=1/2. 1/- /2. 1/
=1/2- /2
= 1-3/ 2
= -/ 4
4) sin(3/2pi + x)
= sin3/2picosx+ cos3/2pisinx
=-1cosx+0sinx
=-1cosx
nid404:
Double angle formulae
sin (A+B)= sinAcosB+cosAsinB
when A=B
sin (A+A)= sinAcosA+cosAsinA
sin 2A= 2cosAsinA
cos(A+B)=cosAcosB-sinAsinB
when A=B
cos 2A= cosAcosA-sinAsinA
cos2A=cos2A- sin2A
cos 2A in terms of sin2A
cos2A+ sin2A=1
cos2A=1-sin2A
cos2A= 1-sin2A-sin2A
=1-2sin2A
in terms of cos2A
cos2A= cos2A-(1- cos2A)
=2cos2A-1
tan(A+B)=
if A=B
tan 2A=
nid404:
5C
3) sin 3A
sin (2A+A)= sin2AcosA+cos2AsinA
sin2A=2cosAsinA and cos2A= 1-2sin2A
sin3A= 2cosAsinAcosA + 1-2sin2AsinA
sin3A=2(1-sin2A)sinA+ sinA- 2sin3A
sin3A= 2sinA-2sin3A+sinA-2sin3A
sin3A=3sinA-4sin3A
8)tan 2A= 12/5
tan 2A= 2tanA/1-tan2A
12/5=2tanA/1-tan2A
12-12tan2A=10tanA
-12tan2A-10tanA+12=0
let tanA=x
-12tan2x-10tanx+12=0
solve quadratic
x=-1.5 and 2/3
thus tan A= -1.5 and 2/3
shedow_21:
:o Did you learned all that......
Navigation
[0] Message Index
[#] Next page
[*] Previous page
Go to full version