Author Topic: TRansformations  (Read 6397 times)

username

  • Guest
Re: TRansformations
« Reply #15 on: May 17, 2009, 01:05:01 pm »
reishamix by any chnce do u study in manarat? cuz thts xactly how our teacher taught us

Offline care

  • SF Immigrant
  • **
  • Posts: 53
  • Reputation: 6
  • Gender: Male
Re: TRansformations
« Reply #16 on: May 17, 2009, 01:07:00 pm »
here is my solution (the previous one had a mistake)!

Offline reishamix

  • SF Geek
  • ****
  • Posts: 345
  • Reputation: 2
Re: TRansformations
« Reply #17 on: May 17, 2009, 01:09:10 pm »
lol no way
i dnt evn live in a city
i go to britich intnl school in tabuk
which is more like a village
and we have  everything here
xcept a school building , book n teachers

Offline SGVaibhav

  • SF Farseer
  • *******
  • Posts: 3013
  • Reputation: 5737
  • Gender: Male
  • Bugatti Veyron 16.4
Re: TRansformations
« Reply #18 on: May 17, 2009, 01:17:37 pm »
haha nice one

a pdf for that
that made me laugh
u made it? [then it is very good]

but a 10kb pdf made me laugh
nice one
+rep

Offline al noor

  • SF Citizen
  • ***
  • Posts: 158
  • Reputation: 33
Re: TRansformations
« Reply #19 on: May 17, 2009, 01:18:47 pm »
please send it 2 me on my email zahraamohd_94@hotmail.com ;)!!!

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #20 on: May 17, 2009, 03:00:26 pm »
hey thanks a lot shan....

@priceless and reishamix

i wud like to learn the base vectors method ..plzz.

it wud very kind of u to teach me..
thank you

Lol ya sure np. umm ok here v go.

Reflection:

1. reflection in ml y=x it's (0 1)
                                   (1 0)

2. refelction in ml y=-x itz (0 -1)
                                    (-1 0)

3. refelction in x-axis itz (1 0)
                                 (0 -1)

4. reflection in y-axis itz (-1 0)
                                  (0  1)

Rotation


1. rotation +90 degrees(anticlockwise) around centre(0,0)  itz (0 -1)
                                                                                    (1  0)

2. rotation -90 degrees(clockwise) around centre (0,0)  itz (0  1)
                                                                               (-1 0)

3. rotation 180 degrees around centre (0,0)  itz (-1 0)
                                                                 (0 -1)

Enlargement

1. centre (0,0) wer k=scale factor, itz (k 0)
                                                    (0 k)

Shear

1. x invariant with x-axis wer k=scale factor (1 k)
                                                            (0 1)

2. y invariant with y-axis wer k=scale factor (1 0)
                                                            (k 1)

Stretch

1. x invariant with y-axis wer k=scale factor (1 0)
                                                            (0 k)

2. y invariant with x-axis wer k=scale factor (k 0)
                                                            (0 1)


phew don't LOL i no itz a lot but once u no dem itz rely easy. u can du ur sums very easily den widout doin da point co ordinate thng. once u no wat da transformation is eddie_adi619 u ll no wat da matrix is also. gud luck 2 all 4 ur xams hope v all du well.
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #21 on: May 17, 2009, 03:01:27 pm »
i hope u understand dem n hope i helped. gud luck evry1!!! ;)
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline sweetsh

  • Retired Adminstrator
  • SF V.I.P
  • ********
  • Posts: 7049
  • Reputation: 65535
  • Gender: Female
  • *Freedom
Re: TRansformations
« Reply #22 on: May 17, 2009, 03:01:37 pm »
NOO!

I was just typing those things when you posted it!

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #23 on: May 17, 2009, 03:08:00 pm »
LOL sory. can u just explain me da shear n stretch base vectors. i no dem but dont get dem....pls help sweetsh.
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline SGVaibhav

  • SF Farseer
  • *******
  • Posts: 3013
  • Reputation: 5737
  • Gender: Male
  • Bugatti Veyron 16.4
Re: TRansformations
« Reply #24 on: May 17, 2009, 03:08:57 pm »
have to say lol  ;D

when it is parallel to x axis, then y axis is parallel
and vice versa

but then howcome
how come in shear

when it is parallel to x axis, x axis is invariant. how :S??????

Offline SGVaibhav

  • SF Farseer
  • *******
  • Posts: 3013
  • Reputation: 5737
  • Gender: Male
  • Bugatti Veyron 16.4
Re: TRansformations
« Reply #25 on: May 17, 2009, 03:09:37 pm »
LOL sory. can u just explain me da shear n stretch base vectors. i no dem but dont get dem....pls help sweetsh.

what is base vectors, please help!

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #26 on: May 17, 2009, 03:14:20 pm »
have to say lol  ;D

when it is parallel to x axis, then y axis is parallel
and vice versa

but then howcome
how come in shear

when it is parallel to x axis, x axis is invariant. how :S??????


im sory but wat du u mean wen itz parallel 2 x-axis den y axis is parallel. hw can both axes b parallel? lol im sooo confused n bout da base vectors dey r da matrixes i wrote down-dey r called base vectors cuz dey r da same evry tym but shear n stretch just duznt go in2 my head AAAAA LOL ??? :-\
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline SGVaibhav

  • SF Farseer
  • *******
  • Posts: 3013
  • Reputation: 5737
  • Gender: Male
  • Bugatti Veyron 16.4
Re: TRansformations
« Reply #27 on: May 17, 2009, 03:18:27 pm »
leave it!

Offline Priceless

  • SF Master
  • ******
  • Posts: 2071
  • Reputation: 1591
Re: TRansformations
« Reply #28 on: May 17, 2009, 03:34:31 pm »
LOL is dat posible but i dunno wat 2 du. i guess i ll try 2 sk my teachers or sumthng. neway can i sk u a ques? ummm r u nline or not cuz u r replying but ur status says ur offline..?LOL
Don't say "God I have tooo many problems" but say "Problems I have God!"   Gud Luck 2 all 4 xams. Hope v all du well.....fingers crossed LOL

Offline junky demon

  • Newbie
  • *
  • Posts: 41
  • Reputation: 3
  • I wish to see this in real-aurora borealis
Re: TRansformations
« Reply #29 on: May 17, 2009, 03:36:25 pm »
hey..the ones whu dint quite understand the inverse methos to find the transformation matrix...it can also be don't with the help of simultaneous equations..juz multiply as if the invariables wer numbers wich wil giv yu the equations thn solve..:D
JD'